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Abstract 

The generator coordinate approximation is a non-adiabatic theory of molecular systems. 
Its fundamental outlines were developed during the 1970's. A further analysis and first 
applications were published during the 1980's. In this paper, we review the present 
status of the theory. 

1. Introduction 

The Born-Oppenheimer approximation [1] or separation of electronic and 
nuclear motion is without any doubt the cornerstone of theoretical (or mathematical) 
chemistry and has generated the primary concepts (electronic states, potential energy 
surfaces, equilibrium configurations, dipole moment functions . . . .  ) in terms of which 
we talk about molecular properties. 

The Bom-Huang expansion [12] of the total molecular wave function in the 
complete set of electronic states yields a set of coupled differential equations that 
constitute an exact representation of the full molecular SchrOdinger equation. Neglecting 
the coupling between different electronic states, a good approximation in the absence 
of (near) electronic degeneracies, leads to the so-called adiabatic approximation. The 
associated wave function is then a product of an electronic state and a nuclear wave 
function. All discrepancies (with the exact solution) caused by this approximation go 
under the name of "non-adiabatic effects" and are due to the fact that the nuclear 
kinetic energy operator is not diagonal in the electronic basis. The standard computational 
strategy to go beyond the adiabatic approximation is to include in the coupled equations 
those electronic states for which the off-diagonal matrix elements of the nuclear 
kinetic energy are significant. Thus improving upon the adiabatic approximation 
amounts to replacing a single product by a sum of products. This procedure is not 
satisfactory from the theoretical point of view since there is no way of estimating 
the convergence of the results. From a practical point of view, it turns out to be 
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cumbersome to calculate several electronic states to the same accuracy, i.e. it is 
difficult to get a balanced input for the method. 

The alternative is to try to extract from a single electronic state more information 
than is accomplished by the adiabatic approximation. It is in this spirit that the 
generator coordinate approximation (GCA) was devised by replacing the product 
state by a convolution product. The resulting trial state in which electronic and 
nuclear motions are explicitly correlated (by the non-product form) can be variationally 
optimized and leads to the reformulation of the theory of molecules in terms of new 
concepts (nuclear weight function, energy integral kernels, dipole integral kernels . . . .  ) 
alternative to the traditional ones (nuclear wave function, potential energy surfaces, 
dipole function . . . .  ). 

A summary of GCA theory and applications up to 1980 was given in a previous 
review [3]. The state of affairs at that time was the following: the formulation of  the 
GCA theory, especially for diatomic molecules, was developed in sufficient detail to 
show the relevant new concepts involved, to pinpoint the computational implications. 
An exactly soluble test problem had shown that the GCA is capable of removing the 
non-adiabatic error of order ~ .*  A number of open problems could be formulated, 
the most immediate of which were the following: 

(1) In order to establish generally whether the GCA energetically improves the 
adiabatic approximation, one should carry out a full perturbation scheme (in 
the spirit of Bona-Oppenheimer perturbation theory) of the GCA nuclear equation, 
i.e. the Wheeler integral equation. 

(2) To confirm the analytical results of such an analysis, a fully numerical application 
of the GCA to a realistic molecular system was called for. 

(3) The Dunham series [4], the tema value formula that is so successful in parametrizing 
diatomic spectra, should have its counterpart in the GCA. The problem remained 
to establish the relation between the Dunham coefficients and the basic theoretical 
concepts of the GCA. 

(4) Although the principle involved in the GCA ansatz seemed acceptable for the 
energy region near a potential minimum, there was no such immediate intuitive 
support for the relevance of the GCA near electronic degeneracies. A test of 
the GCA in such cases of strong non-adiabatic effects was necessary. 

Each of the open problems mentioned above has been addressed during the 
past decade. The present state of affairs, of  which this paper gives an overview, is 
as follows: 

(1) A perturbation analysis of  the GCA allows one to clearly distinguish between 
non-adiabatic contributions, of various orders in ~c, to the GCA energy. Of 
particular importance is the propagation of inaccuracies in the input electronic 
state to the final GCA results. 

"Throughout  this paper, ~" denotes the B o r n - O p p e n h e i m e r  perturbation parameter,  i.e. (rn/M) TM, where 
m is the electron mass and M the average nuclear mass of the molecule. 
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(2) An ab-initio calculation on the H~ molecule has been performed. The results 
confirm the theoretical findings of  the GCA perturbation theory. 

(3) Using anharmonic kernel expansion and order-by-order angular momentum 
projection, explicit term formulae for diatomic molecules were generated. In 
practice, a GCA Dunham series can be established. 

(4) A two-state model for a curve crossing situation in diatomic molecules was 
used to test the GCA in cases of  near electronic degeneracies. Numerical 
calculations on hydrogen and nitrogen show that the GCA effectively improves 
the adiabatic approximation in curve crossing problems. 

The paper is organized as follows. The next section provides a general introduction 
to the GCA, whose main purpose is to fix the notations. Each of the following 
sections deals with one of the above mentioned topics. We give only the general 
outlines of  the arguments; for details about the calculations, we refer to the original 
papers as quoted in the different sections. 

2. The generator coordinate approximation 

In this section, we give a succinct overview of the main features of the 
GCA. The basic assumption is the following ansatz for the total molecular wave 
function [5, 6]: 

• ( r ,R)  = f F ( S  [W)q~(rIS)~(R IS, W ) d S .  (1) 

Here, r stands for all the electron coordinates, R for the 3N Cartesian coordinates of 
the N nuclei, S for 3N Cartesian nuclear "generator" coordinates, and W represents 
a set of  N parameters associated with the nuclei and to be specified below. In the 
integrand of  (1), ~o is the electronic wave function. In principle, it is an exact solution 
of  the electronic SchrOdinger equation, but in practice it will only be an approximate 
numerical solution. The function F is called the "nuclear weight function" or "nuclear 
motion function". As will become clear later on, it is the analogue of  the nuclear 
wave function in the adiabatic approximation. The factor ¢~ is a convolution kernel 
which serves to superimpose electronic wave functions at different generator 
positions S. We assume for a~ a factorized form: 

N 

• (R Is ,  w ) =  (Ri I s i ,  wi), (2) 
i=l  

The function ~ is so defined that the mean value of  S i is just the nuclear position 

I S  i = Ri,  (3) dS 

and the meaning of  the parameter W i is defined as the variance about the nuclear 
pos i t i on  Ri: 
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I (IRi - S i l ) 2 ~ d S  = Wi 2. (4) 

We shall h e n c e f o ~  refer to the parameters W i as "width parameters". We furthermore 
assume that the function ~ tends to a delta function ( ~ ( R  i - S i )  when the parameter 
Wi tends to zero. In this so-called "delta function limit", the GCA reduces to the 
adiabatic approximation since the convolution product (1) then goes over into the 
familiar adiabatic product udA, 

lim W = kI /A= ~p(rlR)F(R). (5) 
W--~O 

Fundamental to the ansatz (1) is therefore the condition that the W i are small, at least 
in those cases where the adiabatic approximation is already a good starting point. A 
physical argument for this assumption can be given by relating the correlation function 
q~ to a specific type of nuclear motion. Whereas the adiabatic approximation describes 
the nuclear motion averaged over a large number of electronic revolutions, the GCA 
proposes to take into account the immediate response of the nuclei to the fluctuations 
in electronic density. These fluctuations are much faster than the nuclear vibrations, 
the typical frequency ratio being of the order of ~c 2. If we assume the instantaneous 
nuclear motion to be harmonic, its amplitude can be estimated to be an order of  
magnitude smaller than the amplitude of normal nuclear vibrations. Therefore, if 
is supposed to describe this type of motion, the width parameters W i are expected 
to be of  this order of magnitude. We shall show later on that this intuitive argument 
is corroborated by the numerical results. 

The nuclear motion function F in (1) is determined by the variational principle 
which requires the total molecular energy to be minimum with respect to the class 
of trial functions of the form (1). This leads to the requirement that F be a solution 
of the Hi l l -Wheeler  integral equation [7] 

I [ H ( S , S ' I W ) - E A ( S , S ' I W ) I F ( S ' I W ) d S ' =  O. (6) 

Here, A and 9{are the "Wheeler kemels" 

A(s, S'l w)  = (~o(s)~(s,  W)l ~o(s')o(s', w)>, 

H(s,s'lw) = <~p(S)¢~(s, W ) l H I  q)(S')~(S',W)>, 

(7) 

(8) 

where H is the complete molecular Hamiltonian. The eigenvalues E are the total molecular 
energies and the eigenfunctions F of (6) yield the total molecular eigenfunctions 
through (1) in the GCA. In regions of the spectrum where the adiabatic approximation 
is meaningful, F should be close to the solution F A of the well-known adiabatic 
nuclear Schr0dinger equation. 

It should also be noted that in case the molecule contains identical nuclei, the 
product (2) must be symmetrized or antisymmetrized over identical bosons or fermions 
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in order to take care of spin statistics. Furthermore, it will be important to treat 
carefully the translational and rotational invariance of the total wave functions, which 
will require the introduction of centre-of-mass coordinates, Eulerian angles and internal 
coordinates. 

3. Pe r tu rba t ion  analysis of the GCA 

In those regions of the spectrum where the electronic properties vary slowly 
with the nuclear positions, i.e. far from "avoided crossings", we may expand the 
electronic operators, wave functions and potentials in powers of the nuclear displacements. 
Born and Oppenheimer have used this technique to set up a perturbation theory for 
the full molecular problem [ 1 ]. In this way, they obtain a series expansion in powers 
of tc of  the molecular energies and wave functions. Unfortunately, the perturbation 
expansion rapidly becomes complicated and the original Bom-Oppenheimer  expansion 
is therefore of limited practical value. However, it can still be used to determine the 
accuracy of more workable variational methods, such as the adiabatic approximation 
and the GCA, if the results of  the latter can be expressed in terms of powers of  ~¢. 
The Born-Oppenheimer  analysis of the adiabatic approximation is well known and 
yields the fundamental ~c 2 and x z estimates of the vibrational and rotational energies 
and establishes an error of order x 6 between the adiabatic and exact total molecular 
energies. In this section, we intend to consider similar estimates for the GCA [8,9]. 

3.1. PERTURBATION SERIES 

In this section, we will perform the Born-Oppenheimer  analysis of  the GCA 
under the assumption that Born-Oppenheimer  perturbation theory applies, i.e. that 
the parameter ~c is small and the electronic properties vary slowly with the nuclear 
positions. In the present case the theory contains, in addition to ~¢, also the small 
parameters W, and therefore the analysis is more subtle. 

We shall start by expressing all widths W~ in terms of one dimensionless width 
parameter W and length factors Ai: 

W i = W X  i.  ( 9 )  

The parameters A, i are specified further by correlating them to the nuclear masses as 
follows: 

2ti = (M/Mi)I /Zao,  (10) 

where a 0 is the Bohr radius. The scaling (10) can be justified since one expects 
smaller non-adiabatic effects and hence smaller W i for heavier nuclei. The (1/2)-power 
in the scaling law relates the amplitude to the mass according to a harmonic motion, 
which may be assumed for order-of-magnitude estimates. The relations (9) and (10) 
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reduce the class of trial wave functions to a one-parameter family containing the 
single width parameter W. 

Next, we define the nuclear displacement vectors u by the generalized Born -  
Oppenheimer transformation 

Ri = R 0 + ~i ~cui. (11)  

Here, R ° are the nuclear equilibrium positions and the nuclear displacements u are 
dimensionless. The transformation (11) should be regarded as a refinement of  the 
Born -  Oppenheimer transformation [ 1 ] taking into account the effect of nuclear mass 
difference on the vibrational amplitudes. 

The assumption that W is small implies that qb is sharply peaked as a function 
of (R - S). Viewed as a function of S, q~ in (1) is sharply peaked around the nuclear 
position R and falls off very rapidly when S moves away from R. As long as it is 
sharply peaked, the exact analytical form of the correlation function is of  secondary 
importance in this respect. The remainder of  the integrand of (6) varies slowly 
compared to q~ and we can therefore expand it in powers of ( R -  S) and ( R -  S') .  
Then, by using standard techniques, the integral equation (6) can be shown to be 
equivalent to the differential equation 

[Ho + ell1 + e2H2 +...1F(u) = E[Ao + eA1 + E2A2 + . . . ]  F(u). (12) 

Here, we have put 

e = (w/~¢)2. (13) 

W/I¢ is the ratio of the nuclear correlation length to the nuclear vibrational amplitude 
which, in the spirit of  GCA, should be a small number. The above analysis thus 
suggests that e is the natural choice of perturbation parameter in the GCA. In (12), 
only even powers of W occur because ~ is even. Each power in ( R -  S) generates 
a factor W and also a factor l/~c because of translormation from R to u. 

The zeroth order differential operators in (12) are simply: A o = 1 and H o = H A, 
the adiabatic Hamiltonian. Tiffs result confirms that the GCA reduces to the adiabatic 
approximation in the delta function limit, i.e. when e -+ 0. The higher order terms 
in (12) contain differential operators in the nuclear displacements u, e.g. 

zXl = (q~(u)lDI qg(u)), 

1 H1 = 2(q)(u)l(DH +HD)lq)(u)). 

(14) 

(15) 

Here, the integration indicated by ( , )  is over the electronic coordinates only and the 
dependence on nuclear coordinates is expressed in the displacements u. The operator 
D is defined by 
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N 
D = ~ A(Ui), (16) 

i=1 

where A(ui) is the Laplacian operator with respect to u i. T h e  n t h  order terms in the 
expansion (12) contain differential operators of 2nth order in the derivatives with 
respect to u. Explicit expressions can be found in [9]. 

In perturbation theory, the eigenvalues and eigenfunctions of  the differential 
equation (12) are expressed in the form of a series expansion: 

E ( e )  = Eo + e E l  + e 2 E 2  + . . . .  (17) 

F ( e )  = Fo + e E l  + e2F2 + . . . .  (18) 

These terms can be obtained by standard double perturbation theory [10]. We find 
for the zeroth order terms E 0 = E A and F 0 = F A, the adiabatic values. For the first 
order energy, we obtain 

E1 = (F0 I (H~ - EoA~) I F  o), (19) 

where now the ( , )  refer to integration over u. The first order correction to the nuclear 
weight function F 1 is determined by the solution of  the inhomogeneous equation 

[H o - E o ] F  I = [E 1 - ( H  1 - EoA1)]F o. (20) 

Higher order terms can be obtained by analogous formulae (see [10]). 

3.2. ORDER ESTIMATES OF NON-ADIABATIC EFFECTS 

So far, we have obtained a series expansion in terms of  the parameter W 
contained in e. What we are after, however, is an expansion in powers of  ~c. Therefore, 
it must be noted that tc is still hidden in the operators A n and H n of  (12) through the 
following relations: 

1 H = - ~- tf2D + Hel ,  

= Z ten ~ 0(n)' 
n 

U = Z~cnU (n), 
t l  

where we have used Hel for the electronic Hamiltonian. The ~p(") are polynomials of  
degree n in u and U is the electronic eigenvalue from 
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Hel q~ = U (.p. (21) 

Substituting the above expressions in the operators A, and H,  and using the Hel lmann-  
Feynman theorem (V = V ( u i )  ), 

< V ~p I Hc~ I q~) = 0. (22) 

We find for the first and second order molecular energy corrections a series expansion 
in powers of ~c. The leading order contribution, for E 1, is 

A = -2K'2((VFo • V~o) I (VF o • V~o)), (23) 

and for E 2 the leading term is 

B = ( ( r E  o • Vq~) I Hc~ - uo  i (VFo • V0)) .  (24) 

Returning to the energy expression (17) and retaining the leading term in each 
coefficient E,, only, we obtain to second order for the non-adiabatic energy correction 

AE(e) = E ( e )  - E o = A e  + BE 2 + . . . .  (25) 

So far, the parameter W and hence e is still arbitrary. According to the variational 
principle, we must determine W by minimizing the total molecular energy. It follows 
from (25) that the optimum value of e is 

eo = I A I / 2 B  (26) 

and the corresponding energy gain 

AE(,%) = - A 2 / 4 B .  (27) 

It should be stressed here that while from (23) it follows that A is always negative, 
the sign of B cannot be decided in general from (24). However, for the electronic 
ground state it is positive. Hence, in that case, the energy E ( e )  has a minimum indeed. 
Formulae (23) and (24) show that the order in ~c of A is O0c ~) and of B it is O(t¢2), 
so the non-adiabatic energy correction is O(~-6), i.e. of  the same order as the error 
on the adiabatic energy. It will be noticed that putting e o in (25), both terms A e  and 
B e  2 are of  the same order O(~-6). It can be established from the Born-Oppenhe imer  
analysis described above that the contributions neglected in (25) are O0c 8) or smaller. 
We also conclude from the above considerations that the optimum width parameter 
W is O(~c2), consistent with the initial assumption that the nuclear correlation length 
is one r-order smaller than the vibrational amplitude. Finally, it should also be 
observed that e 0 is O(~c2), i.e. numerically of order 10 -2 and therefore an appropriate 
t~rturbation parameter. 

In numerical calculations, one necessarily works with approximate electronic 
wave functions. For numerically calculated electronic functions ~o, the Hel lmann-  
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Feynman theorem (22) does not necessarily hold, nor is it true that the relation (21) 
is satisfied because usually numerical techniques diagonalize Hel only in a subspace 
of electronic wave functions. It we then reconsider the expression for El ,  it turns out 
that the leading term is not A but that it is dominated by two other contributions A" 
of order O(1¢ 1) and A" of order O(~¢2). Analogously, E 2 contains besides B of order 
O(~d) two other terms B' of order O(~c 1) and B" of order O(tc2). When the HeUmann-  
Feynman theorem holds, both A' and B' are zero. When Hel is diagonalized in the 
subspace invariant under D, i.e. (D rp [ Hel - U I (P) = 0, both A " and B" are zero. We 
conclude that to find the results obtained above for the exact electronic wave function 
with approximate numerical functions, one should have 

(Vg0lHelig0) = O(/c 5) (Dq~lHel- U l~o) = O(r3),  (28) 

i.e. the Hel lmann-Feynman theorem and the diagonalization Of Hel should be satisfied 
precisely enough, for all R, so as to make A', A" and B', B" negligible compared to 
A and B, respectively. 

3.3. ~ NON-ADIABATIC VIBRATIONAL AND ROTATIONAL EFFECTS 

So far, we have not distinguished between overall motion (translations and 
rotations) and internal vibrations. This distinction is important in a Born-Oppenheimer  
analysis since degrees of freedom associated with overall motion are not confined 
to the vicinity of the equilibrium configuration and can therefore not be subjected 
to Taylor expansion. In order to study the problem in detail, one must transform from 
the Cartesian coordinates R and S used earlier, to new coordinates which involve the 
nuclear centre-of-mass, the Eulerian angles and 3 N - 6  internal variables denoted 
by q. Referring all particle positions to the nuclear centre-of-mass, one can always 
separate off the overall translation of the system. It should be mentioned that measuring 
the electronic positions from the nuclear centre-of-mass avoids the appearance of  
mixed nuclear and electronic gradients but generates so-called mass-polarization 
terms, mixed gradients of  different electrons, which must be absorbed in the definition 
of the electronic Hamiltonian. From now on, the electronic wave functions refer to 
eigenstates of  the electronic Hamiltonian involving mass-polarization terms. 

In order to rewrite the quantities derived in the previous sections in terms of 
the new coordinates, we need the following expression of the nuclear gradient (neglecting 
the translational contribution): 

VR = K J  + ( l /~');Vq, (29) 

where 9( and L are matrices depending on the internal variables q only [11] and J 
is the total nuclear angular momentum. The first term on the r.h.s, of  (29) corresponds 
to the rotational motion of  the nuclear frame and the second term to the vibrational 
motion. Note that the former does not contain the factor 1/to in accordance with the 
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non-local nature of the rotation. In the spirit of the Bom-Oppenheimer  approximation, 
we will replace K and L by their value at equilibrium and choose for the variables 
q the normal coordinates, i.e. those in which the quadratic part of the electronic 
potential energy surface U (2) is diagonal. 

Under these approximations, the adiabatic Hamiltonian takes the form: 

H A =  H v + H R + H vR, 

where 
3 N - 6  

H V ( / ( ' 2 /2 )  ~ [-a(qD+ 2 2 1 = 0Jr qr _1'  

r = l  

(30) 

3 3 
14 R = Jam 4, 

a= l  b= l  

where co, are the normal vibrational frequencies, whereas/-tab is the inverse moment- 
of-inertia tensor at equilibrium. The term H vR is the rotation-vibration coupling and 
can be minimized by a suitable choice of axes. In the case of small amplitude normal 
vibrations, this is done through the "Eckart conditions" [12]. The inertia tensor is 
then given by the classical expression. 

Neglecting the rotation-vibration coupling, the adiabatic energy can be written 
as 

EA(Vr, J) = EO + K 2 Z ( V r +  1) COt+ tc4Ei J, ( 3 1 )  
r 

where E~ J are the eigenvalues of the rotational secular equation, J is the rotational 
quantum number and v, are the vibrational quantum numbers. 

Introducing the above approximations for the Cartesian gradients and the form 
of the adiabatic nuclear wave function in expressions (23) and (24) for A and B, one 
discovers that these quantities can in turn be separated into vibrational and rotational 
parts. It also turns out that the non-adiabatic energy corrections E 1 and E 2 have the 
same form as the adiabatic terms. The vibrational part is linear in the vibrational 
quantum numbers and can hence be accounted for by changing the normal frequencies. 
The rotational part is quadratic in J and can be incorporated by adapting the moment- 
of-inertia tensor. For diatomic molecules, the analytic calculation can be performed 
more explicitly, we obtain for the non-adiabatic energy correction 

with 

1 aE=  c6(v,+ 5)aco + O(Z), (32) 

It follows from this expression that, for the electronic ground state, the correction A~p 
is negative. 

(V cp (*)l V (p(~)): 
Aco = -co (33) 

(V (p(~)l He~ - U (°)1V q~(~)) " 
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3.4. SUMMARY 

In this section, we have demonstrated that a perturbation analysis provides a 
qualitative understanding of the way in which the GCA describes non-adiabatic 
effects. We have shown that the GCA yields non-adiabatic energy corrections with 
the right sign (energy lowering) and of the right size (~-6). Aside from the strictly 
mathematical perturbation procedure based on exact electronic wave functions, we 
have also studied the consequences of using approximate electronic states in numerical 
applications. This reveals the importance of certain properties of the electronic matrix 
elements, such as the Hel lmann-Feymnan theorem, to be valid sufficiently accurately. 
We have also shown that the non-adiabatic effects can be separated in vibrational and 
rotational contributions and how they depend on the corresponding quantum numbers. 

4. The GCA for the hydrogen molecular  ion 

Any general approximation scheme for molecular systems should be tested by 
applying it to the simplest molecule: the hydrogen molecular ion H~. All traditional 
approaches have been worked out for this system [l 311. As a test case, H+2 is unique 
in the sense that the exact electronic eigenstates are available if one solves the 
electronic Schr{Sdinger equation in elliptical coordinates [14]. However, in applying 
the GCA [15, 16] we have chosen not to use this simplifying aspect pertaining to H~. 
On the one hand, one is almost forced not to use the exact electronic state in the GCA 
since a combination with a convolution function, even if expressed in elliptical 
coordinates, leads to unmanageable multicentre integrals. On the other hand, the use 
of an admittedly non-exact but yet accurate electronic state, built from Gaussian 
orbitals, puts a GCA application to H~ on equal footing, as far as methodology is 
concerned, with similar calculations for larger diatomic systems. 

4.1. COMPUTATIONAL STRATEGY 

In the perturbation analysis of section 3, we have not explicitly taken into 
account the rotational invariance of the full molecular Hamiltonian. Here, however, 
we are after the calculation of vibration-rotation energies E(v, J) labelled by a vibrational 
v and a rotational J quantum number. The latter specifies the total angular momentum 
value of the molecular system, i.e. the irreducible representation of the rotation group 
according to which the wave function transforms upon rotation. 

In order to obtain the rotation-vibration energies and corresponding wave functions 
in the GCA, one has to carry out a four-stage procedure: 

(1) an electronic structure calculation over the range of internuclear distances 
accessible to nuclear vibrations; 

(2) the evaluation of overlap and Hamiltonian kernels between intrinsic states, i.e. 
products of  electronic wave functions and nuclear convolution functions; 
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(3) angular momentum projection, i.e. integration of the above-mentioned kernels 
with irreducible representations of the rotation group; 

(4) solution of the projected Wheeler equation, i.e. the Wheeler equation with the 
angular momentum projected kernels obtained in the previous stage. 

Let us discuss some aspects of each of these steps in order to obtain an idea of the 
effort involved in obtaining GCA vibration-rotation levels. 

As already stated above, we did not want to set up the calculations in such a 
way that they are fundamentally restricted to H~ or even to diatomic molecules. We 
therefore did not use elliptical coordinates nor Slater orbitals, but expressed the 
electronic ground state of H~ as a superposition of floating ls Gaussian orbitals. 
Although it is possible, using enough basis functions, to produce a very accurate 
potential energy curve, GCA perturbation theory (see section 2) warns against 
contributions to the GCA energies arising from deficiencies in the associated electronic 
state. More specifically, we already know that the Hellmann-Feynman theorem should 
be satisfied. Another means of improving the quality of the electronic wave function 
is to impose the Virial theorem. For this purpose, a scaling method can be used, as 
demonstrated by L0wdin [17]. A parameter optimization developed by Hurley [18] 
can take care of the Hellmann-Feynman theorem. Since both these procedures are 
numerical, these theorems are satisfied to within a certain accuracy. The consequences 
of this are discussed below. 

As a result of the above procedures, we obtained an approximate electronic 
ground state curve for H~ which has a +3 digit accuracy when compared with Kolos' 
exact results [13]. 

Combining the electronic state, constructed with ls Gaussians, with the choice 

= e x p [ - ( R  - S)2/2W2 l, (34) 

where R is the vector joining the two protons, for the nuclear convolution function, 
allows us to calculate the GCA kernels using multicentre integrals for Gaussian 
orbitals. Unprojected kernels A and 9/ are then integrated with Legendre polynomials 
PJ to generate angular momentum projected versions A; and .q_/:t according to the formulae 

1 

A J ( s , s ' I w )  = f PJ(cosO)A(S,S ' ,  OlW)d(cosO), 
-1 

1 

flacJ(s,s'lw) = f PJ(cosO)g~c(S,S ", OIW)d(cosO), 
-1 

(35) 

(36) 

where the unprojected kernels appearing in the integrand are given by 

A(S,S' ,  OIW) = (x (Sez ,  W)l z (S 'cosOez  + S'  sinOex, W)), (37) 
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5f(S, S',  OI W) = ( z (Se~ ,  W)l HI z(S 'cos  Oez + S's inOex,  W)), (38) 

z ( r , R  IS,  W) = qg(rlS)¢(R IS, W), (39) 

where Z is the diatomic intrinsic state. These formulae apply for Y. states only. In the 
case of non-zero electronic angular momentum about the z-axis, Wigner d-functions 
[19] should replace the Legendre polynomials. The integrals over cos 0 can be performed 
analytically for the overlap kernel and the kinetic energy parts of the Hamiltonian 
kernel. Because of the appearance of incomplete gamma functions [20], this is not 
possible for the potential energy contributions. However, we expect the relevant W- 
values to be quite small, which implies that the integrands in (35) are appreciably 
different from zero if cos 0_= 1. One can therefore expand the unprojected kemels in 
a Taylor series in cos 0 such that a term-by-term integration yields a rapidly converging 
series in W for the projected kernels. Comparing this procedure with numerical integration 
proved to be the faster method. 

Having performed steps 2 and 3, one needs to solve the Wheeler integral 
equation associated with the kemels (35) in order to obtain the GCA energies as a 
function of the width parameter W. For a fixed J, we expect to find a quasi-harmonic 
oscillator spectrum. The associated weight functions, lor small enough values of W, 
should hence not differ too much from oscillator eigenstates. It is therefore a good 
strategy to set up the Wheeler equation in a harmonic oscillator basis with the 
oscillator frequency of the potential energy curve. This leads us to a generalized 
eigenvalue problem containing the two matrices given by 

J F o , A~,,(W) = j" j" F°(S)A](S,S'I W) ,, (S)dS dS', (40) 

f f. F,2(S)A(S,S'IW)F2(S')dS dS'. (41) 

These two-dimensional integrals have to be performed numerically. We found it to 
be advantageous to discretize along the S + S" and S -  S'  directions. This is due to 
the fact that in the S + S' direction, the Hamiltonian kernel strongly resembles the 
electronic potential energy curve, while in the S - S" direction, one finds a quadratic 
behaviour typical for a generator coordinate representation of kinetic energy operators. 
In order to obtain energy eigenvalues of sufficient accuracy to detect non-adiabatic 
effects, the integrations in (40) and (41) have to be done very carefully. Typically, 
we found that it requires +1000 kernel evaluations on a fixed mesh to obtain for 
every J = 1,2, 3 . . . .  the GCA vibrational energies to an accuracy of 8 digits at each 
given value of W. 

4.2. GROUND STATE ENERGY 

The GCA approximation to the ground state energy of H~ is the lowest eigenvalue 
of the Wheeler equation with the projected kernels (35) for J = 0. Since the latter 
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Fig. 1. Least-squares two-term polynomial fit of the GCA ground state 
energy as a function of W. The dots represent the computed data points. 

quantities are W-dependent, so are the eigenvalues. Following the variational method, 

we calculated the energy for different values of  W and minimized. This was achieved 
by proposing a two-term polynomial lqt, shown in l~g. 1, 

E ( W )  = E(O) + a W  2 + b W  4. (42) 

We prefer to use the width parameter W, rather than the parameter e in numerical 
applications. We obtained the following values* for the coefficients: 

E ( 0 )  = - 0 . 5 9 7 0 5 1 0 6 ,  ( 4 3 )  

a = - 0.037014, (44) 

b = + 16.027. (45) 

This yields a GCA ground state energy at W o = 0.010746, with 

E °cA = E ( W  o) = - 0.59705126. (46) 

*In this paper, all numerical values are given in atomic units. 
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This value should now be compared with the adiabatic ground state energy which 
was calculated separately using the potential energy curve and the associated adiabatic 
correction term. As predicted by the theory, we find that the ground adiabatic state 
indeed coincides with the limit as W---) 0 of the GCA energies E(W),  i.e. 

E A -= E(0) = -0.59705106. (47) 

We can therefore conclude that the GCA ground state energy is lower than the 
adiabatic one. The magnitude of the non-adiabatic correction introduced by the GCA 
in this case is: 

AE = E GCA - E A = -2 .0  × 10 -v, (48) 

which is indeed O(~¢ 6) as predicted by general theory. This energy gain represents 
--40 percent of  the full non-adiabatic effect as calculated by Kolos using'the coupled 
differential equations approach. Since we used overall scaling and parameter optimization 
to satisfy the Virial and Hel lmann-Feynman theorems, the remaining non-adiabatic 
effect of  O(t¢ 6) must be attributed to the inaccuracy of  the electronic state used in 
the GCA procedure. 

4.3. EXCITED STATES 

The rotationless vibrationally excited states are obtained as the successive 
eigenvalues of the Wheeler equation with J = 0. The rotationally excited states with 
total angular momentum J are calculated from Wheeler equations containing kernels 
obtained from (35) and (36) with this J value. From the ground state calculation, we 
know that the three-term formula of type (42) accurately fits the GCA energies. 
Therefore, calculations for three fixed W values were made, from which the co- 
efficients E(0), a and b were obtained. Table 1 lists these quantities for J -- 0 ,  1, 2 ,  3 
and v = 0, 1., 2, 3, while in table 2 we list the corresponding GCA energies at the 
optimum values W 0 and the non-adiabatic effects at these values. We also list the 
non-adiabatic effects for all vibrational states at the value of  W that minimizes the 
vibrational ground state for each J. The reason is that it is in principle not allowed 
to separately minimize w.r.t. W the various vibrational energies for the same J, since 
the resulting wave functions would not be orthogonal. Evidently, in order to maintain 
orthogonality, one loses a fraction of the energy lowering. Observe that there is an 
increase in the optimum W 0 values and of the non-adiabatic effect with increasing 
v. This is consistent from the physical point of  view: larger non-adiabatic effects are 
evidence of  stronger coupling between electronic and nuclear motion, and this i s  
reflected in larger values of  the width parameter. 

In order to study the behaviour of  the GCA non-adiabatic corrections AE(v,  J) 
= EGCA(v, J) - EA(v, J) as a function of the vibrational and rotational quantum numbers 
v and J ,  w e  first recall the simplest fit to the adiabatic spectrum 
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T a b l e  1 

E i g e n v a l u e s  o f  the  H i l l - W h e e l e r  e q u a t i o n  w i t h  v = 0, 1, 2, 3 at  W e q u a l  to 

0 . 0 1 2 9 ,  0 . 0 1 5 8  and  0 . 0 1 9 0  for  total  a n g u l a r  m o m e n t u m  J e q u a l  to 0, 1, 2, 3 

J \ v  0 1 2 3 

0 . 0 1 9 0  

0 . 0 1 5 8  

0 . 0 1 2 9  

0 - 0 . 5 9 7 0 5 1 1 7  - 0 . 5 8 6 9 3 5 3 5  

1 - 0 . 5 9 6 7 8 5 4 1  - 0 . 5 8 6 6 8 2 5 6  

2 - 0 . 5 9 6 2 5 5 9 7  - 0 . 5 8 6 2 7 8 9 7  

3 - 0 . 5 9 5 4 6 6 9 5  - 0 . 5 8 5 4 2 8 5 1  

0 - 0 . 5 9 7 0 5 1 2 6  - 0 . 5 8 6 9 3 5 3 2  

1 - 0 . 5 9 6 7 8 5 5 0  - 0 . 5 8 6 6 8 2 5 3  

2 - 0 . 5 9 6 2 5 6 0 7  - 0 . 5 8 6 1 7 8 9 4  

3 - 0 . 5 9 5 4 6 7 0 6  - 0 . 5 8 5 4 2 8 4 8  
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T a b l e  2 

O p t i m u m  v a l u e s  W o, c o r r e s p o n d i n g  G C A  e n e r g i e s  E CcA and  n o n - a d i a b a t i c  c o r r e c t i o n s  

AE .  T h e  A E  o are  the  n o n - a d i a b a t i c  c o r r e c t i o n s  o b t a i n e d  for  the  s i n g l e  w i d t h  p a r a m e t e r  

m i n i m i z i n g  the  g r o u n d  s ta te  e n e r g y  

J \ v  0 1 2 3 

Wo 

0 0 . 0 0 9 9 5 4  0 . 0 1 2 9 4 6  0 . 0 1 5 0 6 5  0 . 0 1 6 7 2 4  

1 0 . 0 0 9 8 7 8  0 . 0 1 2 9 2 1  0 . 0 1 5 0 5 2  0 . 0 1 6 7 7 0  

2 0 . 0 0 9 7 5 5  0 . 0 1 2 8 5 8  0 , 0 1 5 0 3 0  0 . 0 1 6 8 3 4  
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1 E A ( v  , J )  = E A ( 0 ,  0 )  + ( V  + ~- ) 0 ) A +  J ( J +  1 ) / 2 1  A, ( 4 9 )  

where o) A and 1A are the adiabatic frequency and moment of  inertia. In view of  the 
smallness of  the non-adiabatic effects, we expect a similar formula to hold for the 
GCA, i.e. 

1 + J ( J  + 1 ) /2I  GcA. (50) EGCA(v,J)  = EGCA(0, 0) + (V + ~- ) CO GCA 

Putting Ao) = o9 ccA - co A and AI = /GCA _ 1 A, one easily finds that 

a e ( v , J ) =  (v + ) aco-J(J+ l) ax/2(IA) 2 

i.e. one expects a linear behaviour of the GCA correction as a function of  the discrete 
variables v + 1/2 and J U +  1). Figures 2 and 3 confirm the above analysis. The 
reason behind the validity of  the above simple relationship is that in both the adiabatic 
approximation and the GCA, the total energy can be expanded as a Dunham series 
(see next section). From table 3, we see that Aco is negative and quasi-independent 

Table 3 

Harmonic frequency and moment  of inertia corrections 

d Aro [cm ~l] v AI/2(IA) 2 [MHz] 

0 - 0.0654 0 - 12.10 

1 - 0.0662 1 - 6.39 

2 - 0.0676 2 - 0.34 

3 - 0.0699 3 + 21.40 

of J ( w e  therefore show only the v-dependence fo r J  = 3). This confirms the theoretical 
prediction (33). On the other hand, Al is strongly dependent on v ranging from negative 
to positive values. This v-dependence is due to anharmonicity, as will become clear 
in the next section. 

4.4. S U M M A R Y  

In this section, we have summarized the computational strategy and numerical 
results of  a GCA calculation on H~ using a realistic electronic state as input. The 
theoretical predictions of  section 3 were confirmed, i.e. the GCA yields upper bounds 
to the exact energies that lie below the adiabatic ones. The non-adiabatic effects are 
of  the right order of  magnitude in spite of  the use of a moderately accurate electronic 
wave function. However,  this state should at least fulfill the Virial theorem and the 
Hel lmann-Feynman theorem to sufficient accuracy. 
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5. Derivation of the GCA Dunham series 

The gross features of  diatomic spectra can be explained by a threefold partition 
of the molecular energy 

E = Eel + Evi b + Erot, (52) 

where Eel stands for the electronic energy, while Evi b and Ero t are  the vibrational and 
rotational energy of the nuclei, respectively. Such a formula provides a zeroth order 
description of the energy level pattern. However, coupling terms between the various 
types of motion lead to correction terms such that a refinement of the energy expression 
is required. It was first demonstrated by Dunham [4], using semiclassical methods, 
and it can be readily shown in the adiabatic approximation that the total molecular 
energy can actually be written as a series expansion in (v + 1/2) and J(J + 1), i.e. 

E(v ,J )  = ~ Y~t[v + -~ [J(e+ 1)1 t. (53) 
k l  

This formula is known as the Dunham series and provides an excellent phenomenological 
tool for the parametrization of diatomic spectra. The constants Ykt are obtained by 
fitting spectral lines to differences of energy levels from (53). Therefore, if the GCA 
is to be an improved alternative to the adiabatic approximation, also from a phenomeno- 
logical point of view, it should be possible to derive the Dunham series within the 
GCA formalism. It is the purpose of this section to sketch the derivation of  (53) from 
the GCA integral equation [21]. 

5.1. SEPARATION OF MOLECULAR ENERGIES AND KERNEL EXPANSIONS 

Our first task is to show that the GCA eigenvalues approximately partition as 
in (52). We therefore consider the overall topological features of  the basic dynamical 
GCA quantities, i.e. the unprojected kernels, around the point S = S' = S o and 
0 = 0. Here, S o is the value of the generator coordinate for which the GCA intrinsic 
energy H(S, S, O)/A(S, S, O) = E(S) has a minimum. Up to a constant, E(S) is 
approximately equal to the potential energy function in the adiabatic theory. Therefore, 
S o is very close to the equilibrium distance R 0 of the adiabatic approximation. 

Due to the fact that the convolution function is a sharply localized Gaussian, 
it can be shown that the following expressions provide good approximations for 
the unprojected overlap and the ratio K = H/A around the reference configuration 
S = S" = S o and 0 = 0 :  

A ( S , S ' , O ) = - e x p [ - s v ( S - S ' ) e q j e x p l - s R O 2 ] -  A°v(S,S')A°(O),  (54) 

K(S ,S ' ,  O) -- E(So)+ ~1 [ B ( S -  So) 2 + 2 A ( S -  S o ) ( S ' -  So)+ B ( S ' - S o ) 2 ~ -  ~-1 CO 2 

- K°(s,s')+ ( 5 5 )  
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These are termed the Gaussian overlap and quadratic approximations to the unprojected 
kernels. Explicit expressions for the parameters Sv and s R and A, B, C* can be given 
in terms of the Hamiltonian and the intrinsic states Z(Soe,). In particular, if W is of  
order ld it follows that s v and s~ are of order 1/1¢ 4 such that the Gaussian kernels 
in (54) are sharply peaked. If one now introduces (53) and (54) in the GCA energy 
expression, one readily obtains 

1 

(FIAO KOv IF) I d c ° s O P j ( c ° s O ) A °  K° 
-1  , ( 5 6 )  E GCA = E(So)+ + 1 

( F I A ° I F )  IdcosOPj(cosO)AO 
-1 

where ( , )  denote double radial integrations over S and S'. One can now identify 
E(So) with the major part of  the electronic energy, the second term depending only 
on the vibrational-like kernels 5~_ v and A ° ,  with the vibrational energy and the last 
term involving only the rotation angle 0 with the rotational energy, Thus, the above 
formula explains the partitioning (52) starting from the GCA expression for the total 
energy. 

Minimization of the second term in (56) with respect to the vibrational weight 
function F can be shown to lead to a harmonic oscillator spectrum. If, in view of 
the peaked structure of A°(0), one replaces Pv(cos 0) in the third term by its asymptotic 
expansion 1 -  (1/4)J(J + 1)02 + . . . .  the last term can be evaluated analytically. The 
end result is an energy formula of the type (50), namely 

1 J(J+ 1)/21GCA, (57) EGCA(u  ,J) -=- E ( S o ) - A / 4 s v  - C/2SR + (V + 7 )  c0GCA+ 

where 

c0GCA = ( A 2 _ B 2 ) I / 2 / 2 S v  ' I¢3CA = 4s2/C.  (58) 

Here, the GCA vibrational frequency and moment of inertia are given explicitly in 
terms of the parameters of the Gaussian overlap and quadratic approximations. Aside 
from the GCA frequency co C;cA, it is also possible to define a GCA mass parameter 
by rewriting 9(° in terms of the variables 

D =  S - S',  G = (S + S ' ) / 2 -  So , (59) 

to obtain 

-- + c  6o> 

with M GcA = 8s~/(A - B). Griffin and Wheeler [22] showed that, if multiplied with 
A ° ,  the D 2 acts as a kinetic energy operator (2MGCA)-ld2/dS2, while the G 2 term 

"There should be no confusion with the symbols A and B used in section 3. 
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corresponds to an oscillator potential. Thus, the Wheeler equation corresponding to 
the zeroth order vibrational kernels is equivalent to a harmonic oscillator with the 
above defined GCA mass and frequency. 

In the adiabatic approximation, one succeeds in going beyond the zeroth order 
vibration-rotation picture provided by the first three terms of (53), by expanding the 
potential energy function beyond the second order and treating the higher order terms 
by perturbation theory. In the GCA, one can accomplish the same goal by pushing 
the kernel expansions to higher orders. More precisely, since the functions log A(S, S', 0) 
and K(S, S', 0) are smooth functions of their arguments, one expands 

( S - S o )  k ( S t - S o )  l 02m 
logA = ~ Aktr~ k? l? 2m v , (61) 

klrn 

~("= E ~-]Q~lrn ( S - S ° ) k  ( S ' - S ° ) l  02m 
(62) 

klm k ? I? 2m ? 

Only even powers of 0 appear due to time reversal invariance. Explicit expressions 
for the expansion coefficients are given in [21]. Truncation at second order yields 
the zeroth order picture of the previous paragraph. Higher order truncation is not 
directly suitable for a perturbation theory treatment because the above functions do 
not appear directly in the Wheeler equation. However, one can recast the above 
expansions in the forms 

0 0 
A = A V A R [ 1  + '1,12], (63) 

fit( = 0 0 ZXvZXR + LI, (64) 

where, if the Gaussian overlap and quadratic approximations are already accurate, the 
kernels 'Wand L are such that J 'WI << 1 and I L I << I 5~v I. In order to use the equivalence 
of the second order Wheeler equation with the harmonic oscillator differential equation, 
it is also advantageous to write the expansion of Wand  L in terms of the variables 
D and G 

ck]]= Z Ck~q mGp o2qO2rn' (65) 
p qm 

£ = E f-.pqmGPD2qO 2m, ( 6 6 )  

p qm 

where p + 2q > 2 and only even powers in D occur due to hermiticity of the Wheeler 
kernels. These terms constitute the corrections to the lowest order Picture of a harmonic 
oscillator plus rigid rotor, and can be catalogued as pure D, G terms describing 
anharmonicities, pure 0 terms describing centrifugal distortion and mixed terms, 
describing rotation-vibration couplings. 
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5.2. ANGULAR MOMENTUM PROJECTION AND VIBRATIONAL PERTURBATION THEORY 

Angular momentum projection amounts to the integration of the unprojected 
kernels with a Legendre polynomial (see (35) and (36)). In this process, the following 
quantities, termed rotational moments, appear 

1 
[ d cos 0Pj ( c o s 0 ) a o ( 0 ) 0  2" 

Rra(S) = -1 1 
j" d cos0Pj (cosO)zXo(0) 
-1 

(67) 

If expressed in terms of P-powers, the P~ have coefficients that are polynomials in 
JU + 1): 

Pj(cosO) = ~ Pn(J)O 2n, (68) 
n=O 

n 

&(J) = ~ N [ J ( J +  1)l t, (69) 
/=0 

with constants P~ that may be tabulated [21]. The rotational moments, after expressing 
the ratio of two series as one, then take the form 

Bin(J) = (1/SR) m ~ Rlm[J(J+ 1)l t, 
1=0 

(70) 

with R~ derived explicitly in [21]. This is a crucial step toward establishing the 
Dunham series since it involves precisely the JU + l) powers. Using the above properties, 
one obtains the projected kernels in the form 

A J =/,°[1 + J l ,  

z n~,2 /IGCA H~ = a°fe(So)+ K ° -  2R1 ~jj, a +LJI, 

(71) 

(72) 

where now we have introduced angular momentum projected perturbations 'W J and 
L J which are functions of D and G only and which no longer depend on 8. They can 
be written in the form 

c/4fl = Z q~dlq [ J ( J+  1)]IGPD2q' (73) 
p ql 

LJ = Z 4 q  [J(J+ 1)]IGPD2q" (74) 
pqt 
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The projected Wheeler equation has thus acquired a form suitable for (double) 
perturbation theory. Starting from the zeroth order problem which we know to be 
equivalent with a harmonic oscillator problem, we can express the higher order 
energy corrections in the perturbation expansion in terms of basic integrals containing 
powers of D and G and oscillator eigenfunctions. It is well known that such integrals 
can be expressed in powers of v + 1/2. Therefore, by regrouping contributions of 
different order energy corrections to specific powers o f J ( J  + 1) and v + 1/2, one can 
ultimately put the GCA energy in the form 

EGCA(v,J) = EO(v ,J )+  E I ( v , J ) +  E 2 ( v , J ) +  ... 

1 k 
: + 1)] t. (75) 

kl  

The spectroscopic cons t an t s  Yk? CA are unique functions of the kernel parameters 
s v, s R (Gaussian overlap widths), M ccA, co ccA,/GCA (mass, frequency and inertia of 
the GCA r i b -  rotor spectrum) and the coefficients Lpq m and q4~pqm. The explicit derivation 
of the Ykt in terms of these is a complex procedure. This is due to the fact that in 
the GCA we have to deal with two kernels containing three variables, instead of the 
expansion of a single function (the potential energy curve) of one variable in the 
adiabatic approximation. 

5.3. SUMMARY 

We have shown that a zeroth order approximation to diatomic Wheeler kernels 
yields the crude partitioning of the total molecular energy in electronic, vibrational 
and rotational parts. A subsequent treatment of the remainder by order-by-order 
angular momentum projection and double perturbation theory makes it possible to 
establish a derivation of the Dunham series within the framework of the GCA. The 
merit of the above derivation is that, in view of the higher intrinsic accuracy of 
the GCA, the Dunham series justifies the parametrization of diatomic spectra to 
within errors of order ~¢8 However, this information should then be stored in the 
overlap and Hamiltonian kernel coefficients rather than in potential energy coefficients. 
A procedure for how to identify non-adiabatic effects in such fits has been outlined 
in [21]. 

6. GCA for curve-crossing problems 

In the previous sections we have shown, both theoretically and numerically, 
that the GCA is an approximation scheme superior to the traditional adiabatic 
approximation. However, we limited ourselves to energy levels near potential energy 
minima, thus excluding the important case of (near) electronic degeneracies. In this 
paper, we consider applications to diatomic systems only, which means that we 
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should now focus on so-called "curve crossing" situations, i.e. energy ranges in 
which there is a (near) degeneracy between electronic potential energy curves. It is 
well known that the non-adiabatic effect on energy levels in these crossing regions 
is orders of magnitude larger than near potential energy minima [23]. This is due to 
large coupling matrix elements between the two electronic states involved. In order 
to study the performance of the adiabatic and GC approximations under these condi- 
tions [24], we have considered a model Hamiltonian which, after the formal separation 
of electronic and nuclear motion, simulates well the realistic two-state curve-crossing 
situation. 

6.1. TWO-STATE MODELS 

We consider the following Hamiltonian: 

H = ( T +  V)cro + fo-z + CO'x, (76) 

where V, ~" and ~ are functions of a nuclear coordinate R and T is the kinetic energy 
operator -(2/.t)-l(d2/dR2). In (76), cr 0 is the 2 × 2 unit matrix, while cr z and crx are 
Pauli spin matrices so that 

1 
' 1 ) (77) 

are the % eigenstates with eigenvalues + 1, respectively. Model Hamiltonians of  the 
above type have been studied extensively in molecular physics, solid state physics 
and statistical mechanics ([25, 26] and references therein). For our purposes, let us 
first consider the electronic problem arising from (76) if we omit the nuclear kinetic 
energy in view of the large value of the diatomic reduced mass #, i.e. 

(vcr0 +  o-z +  o-x)l = v .  I (78) 

or in matrix notation 

V_ \cn- cn- ' (79) 

where 1,~ = V+ ~'. This electronic SchrOdinger equation represents two states V± 
interacting via the coupling function ~. The electronic eigenstates of  (78) are linear 
combinations of the ~ eigenfunctions and the associated eigenvalues can readily be 
computed by diagonalization of (80). We obtain 

UI ,z = V q::(¢2 q- ~2) 1/2, (80) 

Itpn) = c + l + ) +  Cnl-) ,  (81) 
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with n = 1, 2. One can now define a "crossing region" as the neighbourhood of the 
point where ~" vanishes, i.e. for which the potential energy curves would cross in the 
absence of  coupling. Let us denote this point by R c such that ~'(R c) = 0. If one assumes 
that at large distances from R c the coupling function ~ goes to zero more rapidly than 
the difference potential ~" = (V+ - 1/)/2, one can show that the electronic eigenstates 
tend to pure spin states I+ ) as R --) +,,o (in the present version of  the model, the 
radial variable R is assumed to run from -,~, to + ~,, but this will not affect the 
conclusions). 

Since at all R distances both the spin states I + ) and the Born -Oppenhe imer  
electronic states I ~o~.2) span the electronic part of  the space on which H is defined, 
we can write the exact solutions to the SchrOdinger equation for H in two alternative 
forms: 

or 

F1 (R)I ~Ol )+  F2 (R)I q>2) 

D+(R)I+)+D_(R)I-). 

(82) 

(83) 

The'respect ive nuclear factors F1,2(R) and De(R) need to satisfy the coupled second 
order differential equations 

(T+UI+AU1 U12 Fl )=E(F1 ) 
U21 T+U2+AU2) (f2 F2 

(84) 

or 

r + v _  o_ = e  D _  

The set of  equations (84) are known as the adiabatic coupled equations. They contain 
the potentials U1, 2, which have an avoided crossing at R c, modified by the so-called 
adiabatic corrections AU1, 2 which in the present case are given by 

2 2 

AUl=zXU2= ~-~ l + p 2  d--R) ' 

with p = ~'/~. These potentials interact via the coupling operators UI2 and U21, which 
depend of  R and d/dR and are given explicitly in [24]. Equations (85), on the other 
hand, are known as the diabatic set of coupled equations. They contain the two 
intersecting potentials V+ and V_ interacting via a smooth coupling function ~(R). The 
standard way of  obtaining the diabatic representation from the adiabatic one is to 
require that the momentum coupling term (~01 [d/dR I ~ )  vanishes [27]. Here it is 
clear that, since the pure spin states I + ) are R independent, they satisfy this requirement. 
In realistic cases, one finds that the adiabatic corrections and couplings are large and 
sharply peaked around R c, whereas the diabatic coupling function is small and slowly 



232 J. Broeckhove et al., The generator coordinate approximation 

varying through the crossing region. It is therefore advantageous to generate accurate 
numerical solutions to the SchrOdinger equation for H via the diabatic coupled equations. 
We shall do so in the numerical applications. 

6.2, WEAK AND STRONG ADIABATIC COUPLING LhMITS 

The two-state model presented here is ideally suited to test the accuracy of  
approximation schemes that extract information from an electronic state to produce 
molecular energies and properties. Indeed, the electronic eigenstates are known 
analytically such that any errors left are due purely to the approximation scheme in 
question. 

Before discussing the actual calculations at the various stages of approximation, 
it is instructive to consider two limiting fomls of the Hamilton±an obtained by putting 
either the difference potential ~" or the coupling function { equal to zero. 

In the limit { = 0, the electronic potentials are simply 

U 1 = V - ~, U 2 = V + {. ( 8 7 )  

Since realistically { is positive and almost constant, U 1 and U 2 do not cross. Actually, 
in the exteme case of  constant { the potential curves are parallelly displaced with 
respect to each other. The associated electronic states in this limit are I+)  ± 1 - ) ,  i.e. 
independent of  R, which implies that the adiabatic correction terms and couplings 
vanish. Therefore, eqs. (84) decouple and the adiabatic approximation becomes exact. 
Also, since the trial space includes the adiabatic wave function for zero width, it will 
equally yield the exact solution in the limit ~'= 0. If ~'_-- 0, we expect a weak coupling 
in (84) and we therefore term the limit ~" = 0 the "weak adiabatic coupling limit". 

Consider now the other limiting case { = 0. The electronic eigenvalues are now 

Ol = v - I¢ ' l ,  U2 = V + ~'l ( 8 8 )  

(per definition, 1 is tile lower and 2 the upper curve). Since at R c we have 
~'(Rc) = 0, there is now a true electronic degeneracy at Re. One can show [24] that 
the electronic eigenstates in this limit have spinor components 

c~-=h-1, ci-=h, c~=h, c y = l - h ,  (89) 

where h is the Heaviside step function h ( R - R c ) ,  i.e. h(x)= 0 for x < 0 and 
h(x) = 1 for x > 0. It is clear that if { = 0, we have decoupling of the diabatic coupled 
equations (85) and hence the diabatic states D+(R) I + ) and D ( R )  I - )  are the exact 
solutions if D e are the eigenfunctions of  the equations 

(T + V ± ~)D+ = EeD+_. (90) 

The vanishing of  the diabatic coupling function implies the divergence of  the adiabatic 
correction term and the adiabatic coupling operator. The nature of  these singularities 



J. Broeckhove et al., The generator coordinate approximation 233 

becomes clear.if we assume that around R c the function { i s  constant, while ~ can 
be approximated linearly with slope ~.. The correction term now becomes the square 
of a Lorentzian 

8m (R - R c ) 2 + ( ~ / / ~ )  2 " 
(91) 

v - I ~ l  if R >  or <R c 

V + I~l if R >  or < R  c 

since per definition the electronic 

and +oo if R <  or ->Re, (92) 

and +~o if R <  or _>R c, (93) 

eigenvalue 1 is the lower and 2 the upper potential 
energy curve. The eigenfunctions of these potentials must vanish at R = R c and are 
zero on either of  the half lines R >_ R~ or R < R~. Therefore, they never coincide with 
the exact solutions and there is always a finite non-adiabatic effect in the limit 
x --+ 0. In view of the behaviour of the adiabatic approximation in this limiting case, 
we will refer to the limit ~ --+ 0 as the strong adiabatic coupling limit. 

Turning to the GCA, it is then logical to ask the question: how does the GCA 
behave in the strong adiabatic coupling limit? In order to answer this question, we 
observe that due to the special form of the electronic states as ~ goes to zero, the 
GCA integral in this limit divides into two terms: 

I+) I F(S)C~(R IS, W)dS + I - )  I F(S)OO(R IS, W)dS. 
- - o o  R e  

(94) 

A theorem on coherent states by Bargmann et al. [28] implies that any infinite set 
of Gaussians labelled by centres that converge to a finite limit constitutes a complete 
set for square integrable functions on the real line. Clearly, the Gaussians centered 
on either of  the half lines ] - ~ ,  Rc] and [R c, + ~ [  both include complete sets for 
square integrable functions such that F(S) restricted to the above intervals can always 
be chosen to represent D(R) and D+(R), respectively, 

Rc 

D+(R) = I F(S)exp(-(R -S)2/2W 2) dS, 
- -  ,z,a 

(95) 

D_(R)= I F(S)exp( - (R-S)2 /2W 2)dS. 
Re 

(96) 

Clearly, the area under the potential energy barrier created by the adiabatic correction 
term tends to infinity as ~ goes to zero. Therefore, the divergence at the crossing 
point is stronger than a Dirac delta function potential. An actual wall is erected at 
R = R c looking from either side of the crossing point. This divergency is the mathematical 
signature of the so-called "breakdown of the adiabatic approximation". Indeed, even 
if one neglects the coupling operators, the adiabatic eigenvalues must be obtained 
from SchrOdinger equations with truncated potentials 



234 J. Broeckhove et aL, The generator coordinate approximation 

Therefore, the GCA states can be made to coincide with the true eigenstates, i.e. the 
GCA becomes exact in the strong adiabatic coupling limit. 

6.3. N U M E R I C A L  RESULTS 

In order to compare the adiabatic approximation and the GCA on realistic 
curve crossing situations and to numerically verify the theoretical findings in the 
strong coupling limit, we construct a model Hamiltonian for the EF, GK1Z,+g potentials 
of  hydrogen [29] and the b', c '  ly+ potentials of  nitrogen [30], respectively. In order 
to model the curve crossing situations in these diatomic molecules, we took the 
simplest possible representation for the diabatic states, i.e. quadratic expressions 

1 V±(R) = ~k±(R-R±)2+d±, (97) 

in which R±,/q: and d± were identified with the potential energy curve minima, harmonic 
force constants of the lowest adiabatic double minimum potentials in the avoided 
crossings quoted above. The coupling function ~ was assumed constant and fitted to 
the energy gap between the ab initio adiabatic curves at the crossing point. The 
parameters obtained are listed in table 4. This procedure gives a good potential 

Table 4 

Model parameters for the curve crossings 

in H 2 and in N 2 referred to in the text 

H2 N 2 

m 918.0764 12861.9226 

k_ 0.1009 0.1539 

k+ 0.0301 1.2534 

R 1.9287 2.7211 

R÷ 4.4305 2.1163 

d - 0.7159 0.4703 

d÷ - 0.7137 0.4715 

0.0140 5.8E - 03 

energy topology for energies below U 2 ( R c ) .  We therefore restricted our calculations 
to vibrational levels below this energy. This gives us a set of  fifteen states for H 2 
and ten for N 2. Out of these ten, respectively six, are situated in the crossing region, 
i.e. in between Ul(Rc) and Uz(Rc). 

The exact energy eigenvalues were computed by diagonalizing the coupled 
diabatic equations in a sufficiently large basis of  oscillator states centered at R~. The 
corresponding adiabatic energies were obtained by applying the renormalized Numerov 
method [31] to the adiabatic potential U 1 + AU v The difference between these numbers 
gives us the non-adiabatic effect on the vibrational energies. From tables 5 and 6, 
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T a b l e  5 

O v e r v i e w  o f  c o m p u t e d  d a t a  f o r  t he  f i r s t  f i f t e e n  l e v e l s  in  t h e  H 2 c a s e .  E x a c t  a n d  a d i a b a t i c  e n e r g i e s ,  

n o n - a d i a b a t i c  e f f e c t ,  G C A  e n e r g i e s  a n d  p e r c e n t  c o r r e c t i o n  b y  t h e  G C A  o f  t h e  n o n - a d i a b a t i c  e f f e c t ,  

a n d  t h e  o p t i m u m  w i d t h  p a r a m e t e r  o f  t he  G C A  r e s u l t .  A l l  e x p r e s s e d  in  a . u .  

r) E EXACT E A E NA E GCA % W 

0 - 0 . 7 1 2 7 7 4 5 6  - 0 . 7 1 2 7 6 9 7 8  - 0 . 4 7 7 2  E - 0 5  - 0 . 7 1 2 7 7 4 2 6  9 3 . 9  0 . 1 2 9  

1 - 0 . 7 1 1 5 0 1 4 1  - 0 . 7 1 1 5 0 1 3 4  - 0 . 7 3 2 9  E - 0 7  - 0 . 7 1 1 5 0 1 3 9  7 4 . 3  0 , 0 7 7  

2 - 0 . 7 0 5 8 6 2 0 8  - 0 . 7 0 5 8 6 1 5 5  - 0 . 5 2 5 5  E - 0 6  - 0 . 7 0 5 8 6 1 9 0  6 5 . 5  0 , 0 8 8  

3 - 0 . 7 0 2 6 0 8 4 2  - 0 . 7 0 2 5 7 9 6 9  - 0 . 2 8 7 3  E - 0 4  - 0 . 7 0 2 6 0 6 7 7  9 4 , 3  0 . 1 3 9  

4 - 0 . 7 0 0 2 5 7 3 3  - 0 . 7 0 0 2 5 4 1 9  - 0 . 3 1 4 2  E - 0 5  - 0 . 7 0 0 2 5 6 3 0  6 7 . 2  0 , 1 0 9  

5 - 0 . 6 9 4 7 4 6 6 0  - 0 . 6 9 4 7 3 7 4 7  - 0 . 9 1 2 5  E - 0 5  - 0 . 6 9 4 7 4 3 5 8  6 6 . 9  0 , 1 2 1  

6 - 0 . 6 9 2 7 5 5 4 3  - 0 . 6 9 2 6 5 8 9 2  - 0 . 9 6 5 0  E - 0 4  - 0 . 6 9 2 7 5 1 8 3  9 6 . 3  0 , 1 4 4  

7 - 0 . 6 8 9 2 7 1 1 1  - 0 . 6 8 9 2 0 3 5 9  - 0 . 6 7 5 2  E - 0 4  - 0 . 6 8 9 2 6 1 2 0  8 5 . 3  0 , 1 5 1  

8 - 0 . 6 8 4 7 7 0 7 3  - 0 . 6 8 4 6 0 2 8 1  - 0 . 1 6 7 9  E - 0 3  - 0 . 6 8 4 7 5 8 1 1  9 2 . 5  0 , 1 5 1  

9 - 0 . 6 8 2 2 5 6 6 1  - 0 . 6 8 2 0 0 4 8 1  - 0 . 2 5 1 8  E - 0 3  - 0 . 6 8 2 2 4 5 2 2  9 5 . 5  0 . 1 5 8  

10  - 0 . 6 7 8 0 3 3 0 2  - 0 . 6 7 7 7 1 2 7 6  - 0 . 3 2 0 2  E - 0 3  - 0 . 6 7 7 9 9 5 7 1  8 8 . 4  0 . 1 6 7  

11 - 0 . 6 7 3 7 8 3 6 7  - 0 . 6 7 3 3 9 5 0 0  - 0 . 3 8 8 6  E - 0 3  - 0 . 6 7 3 7 6 3 7 1  9 4 . 9  0 . 1 5 8  

12  ~ - 0 . 6 6 9 9 2 4 9 5  - 0 . 6 6 9 4 4 7 7 4  - 0 . 4 7 7 2  E - 0 3  - 0 . 6 6 9 8 7 2 1 7  8 8 . 9  0 . 1 6 7  

13 - 0 . 6 6 5 4 6 9 6 9  - 0 . 6 6 4 8 7 4 9 6  - 0 . 5 9 4 7  E - 0 3  - 0 . 6 6 5 3 6 0 2 3  8 1 . 6  0 . 1 6 7  

14 - 0 . 6 6 0 9 0 4 2 3  - 0 . 6 6 0 3 2 0 3 9  - 0 . 5 8 3 8  E - 0 3  - 0 . 6 6 0 8 5 2 1 2  91 .1  0 . 1 5 8  

T a b l e  6 

O v e r v i e w  o f  c o m p u t e d  d a t a  fo r  the  f i r s t  f i f t e e n  l e v e l s  in t he  N 2 c a s e .  E x a c t  a n d  a d i a b a t i c  e n e r g i e s ,  

n o n - a d i a b a t i c  e f f e c t ,  G C A  e n e r g i e s  a n d  p e r c e n t  c o r r e c t i o n  b y  the  G C A  o f  t he  n o n - a d i a b a t i c  e f f e c t ,  

a n d  the  o p t i m u m  w i d t h  p a r a m e t e r  o f  t he  G C A  r e s u l t .  A l l  e x p r e s s e d  in  a .u .  

V E EXACT E A E NA E GCA % W 

0 0 . 4 7 1 8 6 5 4 3  0 . 4 7 1 8 6 5 7 2  - 0 . 2 9 1 E  - 0 6  0 . 4 7 1 8 6 5 5 3  6 3 . 6  0 . 0 3 7 8  

1 0 . 4 7 5 0 1 0 3 4  0 . 4 7 5 0 9 0 2 5  - 0 . 7 9 9  E - 0 4  0 . 4 7 5 0 1 0 7 6  9 9 . 5  0 . 0 5 5 9  

2 0 . 4 7 5 2 9 3 6 4  0 . 4 7 5 3 1 9 2 4  - 0 . 2 5 5  E - 0 4  0 . 4 7 5 2 9 4 8 2  9 5 . 4  0 . 0 5 5 9  

3 0 . 4 7 8 6 5 2 8 4  0 . 4 7 8 6 8 6 0 8  - 0 . 3 3 2  E - 0 4  0 . 4 7 8 6 5 7 2 8  8 6 . 6  0 . 0 5 9 8  

4 0 . 4 8 1 8 4 3 1 5  0 . 4 8 1 9 6 5 8 3  - 0 . 1 2 2  E - 0 3  0 . 4 8 1 8 6 1 3 6  8 5 . 2  0 . 0 5 9 8  

5 0 . 4 8 3 9 5 7 4 0  0 . 4 8 4 2 8 1 3 9  - 0 . 3 2 3  E - 0 3  0 . 4 8 3 9 6 4 3 4  9 7 . 9  0 . 0 5 5 9  

6 0 . 4 8 6 0 6 4 8 2  0 . 4 8 6 4 3 9 1 6  - 0 . 3 7 4  E - 0 3  0 . 4 8 6 0 9 2 3 1  9 2 . 7  0 . 0 6 7 4  

7 0 . 4 8 9 2 1 1 5 0  0 . 4 8 9 7 6 2 7 4  - 0 . 5 5 1  E - 0 3  0 . 4 8 9 3 2 0 0 4  8 0 . 3  0 . 0 6 7 4  

8 0 . 4 9 2 4 6 0 3 6  0 . 4 9 3 1 2 8 5 6  - 0 . 6 6 8  E - 0 3  0 . 4 9 2 5 9 5 7 4  7 9 . 7  0 . 0 6 2 0  

9 0 . 4 9 5 4 4 2 6 6  0 . 4 9 6 1 7 3 8 4  - 0 . 7 3 1  E - 0 3  0 . 4 9 5 4 8 0 3 5  9 4 . 8  0 . 0 6 7 4  

we see that for both molecules the non-adiabatic effect increases by over two orders 
of magnitude from the ground state to the level nearest U2(Rc). For all levels in these 
tables, the GCA energies are computed as a function of W by diagonalizing the GCA 
integral equation in the set of adiabatic functions obtained from the Numerov method. 
The typical behaviour of ECcn(w) is illustrated in fig. 4. Starting from the adiabatic 
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Fig. 4. T h e  G C A  ene rgy  as a func t ion  o f  W for level  v = 14 in the H 2 case .  

T h e  G C A  ene rgy  is exp re s sed  in percen t  o f  non-ad iaba t i c  effect ,  W is in a.u. 

value at W = 0, they show an energy lowering toward the exact values. After reaching 
a minimum, the curves start to rise due to the more diffuse character of the convolution 
function. Tables 5 and 6 further list the GCA energies and the values of  the width 
parameters at which they are obtained and give a percentage comparison of  the 
performance of  the GCA versus the adiabatic approximation, i.e. the difference 
between adiabatic and GCA energies relative to the non-adiabatic effect. Overall, 
there is a marked improvement over the adiabatic results. 

If we define the non-GCA effect as the difference between the exact energies 
and the minima of the E6CA(w), we can compare these numbers with the non-adiabatic 
effects, as in tables 5 and 6. Because the relative improvement introduced by the 
GCA is approximately constant as the vibrational quantum number and the non- 
adiabatic effect increase, the results are even more impressive in absolute terms. This 
is clearly seen in figs. 5 and 6. They show that the GCA represents an order of  
magnitude improvement over the adiabatic approximation as far as the levels in the 
crossing region are concerned. 

In order to numerically verify the theoretical statement that in the limit of  
strong adiabatic coupling the GCA results converge to the exact solutions, we performed 
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a calculation for H 2 with an energy gap parameter ten times smaller than the one used 
in the above fit. In table 7, we have listed the non-adiabatic effect in both cases, 
together with the percentage of the error corrected by the GCA procedure. For the 
ground state, the non-adiabatic effect in the narrow gap case is extremely small (of 
order 10 -8) and this is the only level in which the GCA percentage did not improve. 

T a b l e  7 

C o m p a r i s o n  o f  n o n - a d i a b a t i c  e f f e c t s  a n d  p e r c e n t a g e s  o f  n o n - a d i a b a t i c  

e f f e c t s  c o r r e c t e d  b y  t h e  G C A  in  the  H 2 c a s e  f o r  ~ as  b e f o r e ,  a n d  ~ t e n  

t i m e s  s m a l l e r  

0 . 0 1 4  0 . 0 0 1 4  

E NA % E NA % 

0 - 0 . 4 7 7 2  E - 0 5  9 3 . 9  - 0 . 1 0 5 7  E - 0 7  7 9 . 5  

1 - 0 . 7 3 2 9  E - 0 7  7 4 . 3  - 0 . 4 0 6 7  E - 0 5  9 9 . 0  

2 - 0 . 5 2 5 5  E - 0 6  6 5 . 6  - 0 . 2 5 6 2  E - 0 6  9 0 . 5  

3 - 0 . 2 8 7 3  E - 0 4  9 4 . 3  - 0 . 5 4 8 6  E - 0 4  9 9 . 6  

4 - 0 . 3 1 4 2  E -  0 5  6 7 . 2  - 0 . 2 9 9 0  E -  0 5  9 6 . 3  

5 - 0 . 9 1 2 5  E - 0 5  6 6 . 9  - 0 . 1 9 9 8  E - 0 4  9 8 , 4  

6 - 0 . 9 6 5 0  E - 0 4  9 6 . 3  - 0 , 3 1 4 1  E - 0 3  9 9 . 8  

7 - 0 . 6 7 5 2  E - 0 4  8 5 . 3  - 0 . 9 5 4 8  E - 0 4  9 9 . 1  

8 - 0 . 1 6 7 9  E -  0 3  9 2 , 5  - 0 . 2 9 5 2  E -  0 3  9 9 . 3  

9 - 0 . 2 5 1 8  E -  0 3  9 5 . 5  - 0 . 1 0 5 3  E - 0 2  99 .1  

10  - 0 . 3 2 0 2  E - 0 3  8 8 . 4  - 0 . 7 4 9 5  E - 0 3  9 9 . 0  

11 - 0 . 3 8 8 6  E -  0 3  9 4 . 9  - 0 . 1 4 1 0  E - 0 2  9 9 . 0  

12 - 0 . 4 7 7 2  E - 0 3  8 8 . 9  - 0 . 2 4 6 8  E - 0 2  9 8 . 7  

13 - 0 . 5 9 4 7  E - 0 3  8 1 , 6  - 0 . 2 4 3 3  E - 0 2  9 7 . 9  

14 - 0 . 5 8 3 8  E - 0 3  91 .1  - 0 . 3 4 2 7  E - 0 2  96 .1  

However, as one moves into the crossing region the non-adiabatic effect increases 
by over five orders of  magnitude (of order 10 -3 ) and we see that for most levels, 
especially the ones in the crossing region, the percentages are as high as 95-99 .  We 
can safely conclude that the results of  table 7 confirm our theoretical findings. The 
large GCA percentage for levels near the crossing point demonstrate the specific 
effectiveness of  the trial state in crossing situations. 

Finally, table 8 lists the exact and adiabatic energies in the strong adiabatic 
coupling limit ~ = 0. As discussed above, the finite non-adiabatic effect is caused 
by the discontinuity at R~ of the adiabatic correction term. Observe that the magnitude 
of the non-adiabatic effect increases monotonically with decreasing ~. The non- adiabatic 
effect causes drastic level shifts. Indeed, on the 7th level in the left well it is almost 
as large as the vibrational level spacing. The situation only becomes worse for higher 
excitations until there is no resemblance left between the adiabatic and exact spectra, 
and the "breakdown" of the adiabatic approximation is complete. 
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T a b l e  8 

E x a c t  a n d  a d i a b a t i c  e n e r g i e s  a n d  t h e  n o n - a d i a b a t i c  e f f e c t  i n  

H 2 i n  t h e  s t r o n g  a d i a b a t i c  c o u p l i n g  l i m i t ,  i . e .  ~ g o i n g  t o  z e r o  

L e f t  w e l l  R i g h t  w e l l  

EEXACT E A ENA EEXACT E A ENA 

- 0 . 7 1 0 6 5 8 3  - 0 . 7 1 0 6 5 1 9  - 0 . 6 4  E - 0 5  - 0 . 7 1 0 8 3 7 1  - 0 . 7 1 0 8 3 7 0  - 0 . 1 0  E - 0 6  

- 0 . 7 0 0 1 7 4 7  - 0 . 7 0 0 0 9 2 7  - 0 . 8 2  E - 0 4  - 0 . 7 0 5 1 1 1 1  - 0 . 7 0 5 1 1 0 7  - 0 . 3 5  E - 0 6  

- 0 . 6 8 9 6 9 1 2  - 0 . 6 8 9 2 4 2 9  - 0 . 4 5  E - 0 3  - 0 . 6 9 9 3 8 5 2  - 0 . 6 9 9 3 8 0 9  - 0 . 4 3  E - 0 5  

- 0 . 6 7 9 2 0 7 7  - 0 . 6 7 7 7 8 4 2  - 0 . 1 5  E - 0 2  - 0 . 6 9 3 6 5 9 4  - 0 . 6 9 3 6 3 0 5  - 0 . 2 9  E - 0 4  

- 0 . 6 6 8 7 2 4 2  - 0 . 6 6 5 5 5 1 0  - 0 . 3 2  E - 0 2  - 0 . 6 8 7 9 3 3 4  - 0 . 6 8 7 8 0 7 4  - 0 . 1 3  E - 0 3  

- 0 . 6 5 8 2 4 0 8  - 0 . 6 5 2 5 8 0 9  - 0 . 5 7  E - 0 2  - 0 . 6 8 2 2 0 7 5  - 0 . 6 8 1 8 1 9 7  - 0 . 3 9  E - 0 3  

- 0 . 6 4 7 7 5 7 3  - 0 . 6 3 8 9 8 8 9  - 0 . 8 8  E - 0 2  - 0 . 6 7 6 4 8 1 7  - 0 . 6 7 5 5 7 9 4  - 0 . 9 1 E  - 0 3  

6 . 4 .  S U M M A R Y  

In this section, we have used a model Hamiltonian to simulate curve crossing 
situations in H 2 and N 2. We introduced the weak and strong adiabatic coupling limits 
and showed theoretically that both the adiabatic approximation and the GCA are 
exact in the weak coupling limit. However, the adiabatic approximation breaks down 
in the strong coupling limit, whereas the GCA is exact also in this case. Numerically, 
we find that the GCA for both molecules investigated removes a significant part, i.e. 
80 to 90 percent, of the non-adiabatic effect on levels in the crossing region. For H 2 

we demonstrated the behaviour of the approximation schemes in the strong coupling 
limit. 

7. Conclusion 

In this paper, we have discussed the GCA as a general approximation scheme 
for molecules. Just as in the Born-Oppenheimer approximation, this new method is 
based on the concept of "electronic state". In the traditional approaches, the Hilbert 
space which accommodates the total molecular wave function is generated through 
a basis set expansion in electronic states taken at the same nuclear configuration. The 
new mathematical idea behind the GCA is to generate the trial space of molecular 
states by superposition of the same electronic states taken at different nuclear 
configurations. Both spaces have a large amount of overlap, but differ in the way in 
which the correlation between electronic and nuclear motion is incorporated. 

We have shown by specific examples that the new method is both applicable 
and relevant in the energy region near electronic potential minima as well as in the 
region of avoided crossings of electronic potentials. As an example of the former 
situation, we have considered the low energy vibration-rotation spectrum of H~ and 
as an example of the latter, we have looked at the vibrational levels in double minima 
potentials of H 2 and N 2. Both studies, however, differ not only in the topology of 
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the electronic potential surfaces. In the H~ case, we made a complete ab initio calculation, 
whereas in the avoided crossing case we used a model Hamiltonian which generates 
an exactly solvable electronic problem. 

It might appear paradoxical that in the ab initio case of H~ the GCA should 
correct only about 40% of the adiabatic error, while in the H 2 and N 2 cases we could 
obtain an accuracy of over 80%. The reason is that the GCA relies for its electronic- 
nuclear correlation effects on just one electronic eigenfunction. Therefore, the results 
are very sensitive to the quality of this function. In the former case we used a 
moderately accurate electronic state, whereas in the latter we used the exact ones 
associated with the model, hence the difference in performance. 

Therefore, as far as the future perspectives of the GCA are concerned, it is 
necessary to distinguish between two levels of application of this theory: either one 
uses the GCA in the full molecular description, including both electronic and nuclear 
degrees of freedom, or one introduces the GCA at the stage where the electronic 
variables have been suppressed by the definition of an effective nuclear Hamiltonian. 
In realistic applications to larger systems, the former approach seems to become 
prohibitively numerically intensive. Although the GCA saves the calculation of more 
than one electronic state, it requires vet 7 laborious manipulations of the single electronic 
wave function, that needs to be quite accurate. The latter approach, using model 
Hamiltonians, seems to be very promising. Extension of the present applications to 
multi-level crossings and the introduction of several nuclear degrees of freedom to 
include Jahn-Tel ler  type effects seem feasible. 

In any case, the above outline makes it clear that the GCA is able, through its 
convolution type trial state, to extract information about several electronic states 
from a single electronic wave function. Therefore, its fundamental merit resides in 
the physical mechanism embodied in its mathematical formulation. 
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